Extensions 1→N→G→Q→1 with N=C2 and Q=C22×D23

Direct product G=N×Q with N=C2 and Q=C22×D23
dρLabelID
C23×D23184C2^3xD23368,41


Non-split extensions G=N.Q with N=C2 and Q=C22×D23
extensionφ:Q→Aut NdρLabelID
C2.1(C22×D23) = C2×C4×D23central extension (φ=1)184C2.1(C2^2xD23)368,28
C2.2(C22×D23) = C22×Dic23central extension (φ=1)368C2.2(C2^2xD23)368,35
C2.3(C22×D23) = C2×Dic46central stem extension (φ=1)368C2.3(C2^2xD23)368,27
C2.4(C22×D23) = C2×D92central stem extension (φ=1)184C2.4(C2^2xD23)368,29
C2.5(C22×D23) = D925C2central stem extension (φ=1)1842C2.5(C2^2xD23)368,30
C2.6(C22×D23) = D4×D23central stem extension (φ=1)924+C2.6(C2^2xD23)368,31
C2.7(C22×D23) = D42D23central stem extension (φ=1)1844-C2.7(C2^2xD23)368,32
C2.8(C22×D23) = Q8×D23central stem extension (φ=1)1844-C2.8(C2^2xD23)368,33
C2.9(C22×D23) = D92⋊C2central stem extension (φ=1)1844+C2.9(C2^2xD23)368,34
C2.10(C22×D23) = C2×C23⋊D4central stem extension (φ=1)184C2.10(C2^2xD23)368,36

׿
×
𝔽